Delamo na obnovitvi aplikacije Unionpedia v trgovini Google Play
OdhodniDohodne
🌟Poenostavili smo našo zasnovo za boljšo navigacijo!
Instagram Facebook X LinkedIn

Mera iracionalnosti

Index Mera iracionalnosti

Mera iracionalnosti (eksponent iracionalnosti, aproksimacijski eksponent ali Liouville-Rothova konstanta) realnega števila x je v teoriji števil mera kako »dobri« racionalni približki zanj obstajajo.

Kazalo

  1. 15 odnosi: Algebrsko število, Celo število, E (matematična konstanta), Joseph Liouville, Kvadratno iracionalno število, Mera (matematika), Neskončnost, Pi, PlanetMath, Racionalno število, Realno število, Teorija števil, Transcendentno število, Verižni ulomek, 2 (število).

Algebrsko število

Algébrsko števílo (zastarelo algebrajsko število) je vsako realno ali kompleksno število, ki je rešitev neke polinomske enačbe oblike: kjer je n > 0 in so koeficienti ai cela števila (ali enakovredno racionalna števila), ne vsa enaka 0.

Poglej Mera iracionalnosti in Algebrsko število

Celo število

Množica célih števíl, običajno označena kot Z (Z ali \mathbb) (število) je določena kot množica ekvivalenčnih razredov urejenih parov naravnih števil N x N z ekvivalenčno relacijo (a, b) ~ (c, d), pri kateri velja: Dvočleni aritmetični operaciji seštevanja in množenja celih števil sta določeni z: Običajno se razred (a, b) označi z znakom n, če velja b ≤ a in −n, če je a ≤ b, kjer je n poljubno naravno število, da velja a.

Poglej Mera iracionalnosti in Celo število

E (matematična konstanta)

rdeče). Matematična konstanta e (včasih imenovana Eulerjevo število po švicarskem matematiku, fiziku in astronomu Leonhardu Eulerju, ali tudi Napierova konstanta v čast škotskemu matematiku in teologu Johnu Napieru, ki je odkril logaritme), je osnova naravnih logaritmov.

Poglej Mera iracionalnosti in E (matematična konstanta)

Joseph Liouville

Naslovnica prve številke revije ''Journal de mathématiques pures et appliquées'' leta 1836. Joseph Liouville, francoski matematik, * 24. marec 1809, Saint-Omer, Pas-de-Calais, Francija, † 8. september 1882, Pariz, Francija.

Poglej Mera iracionalnosti in Joseph Liouville

Kvadratno iracionalno število

Kvadrátno iracionálno števílo (redkeje tudi kvadrátni súrd) je v matematiki algebrsko iracionalno število, ki je rešitev kakšne kvadratne enačbe z racionalnimi koeficienti.

Poglej Mera iracionalnosti in Kvadratno iracionalno število

Mera (matematika)

prazne množice mora biti enaka 0. Méra na množici je v matematični analizi sistematični način prireditve števila vsaki njeni ustrezni podmnožici, ki ga intuitivno tolmačimo kot njeno velikost.

Poglej Mera iracionalnosti in Mera (matematika)

Neskončnost

right Neskônčnost, navadno označena s znakom \infty, je značilnost, ki pomeni, da nekaj ni omejeno ali nima mej.

Poglej Mera iracionalnosti in Neskončnost

Pi

Mala črka ''π'', ki se uporablja za konstanto Pri premeru '''1''' je obseg kroga enak '''π''' Število pi (označeno z malo grško črko π) je matematična konstanta, ki se pojavlja na mnogih področjih matematike, fizike in drugod.

Poglej Mera iracionalnosti in Pi

PlanetMath

PlanetMath je prosta spletna matematična enciklopedija.

Poglej Mera iracionalnosti in PlanetMath

Racionalno število

Racionálno števílo je v matematiki število, ki ga lahko izrazimo kot razmerje ali količnik (kvocient) dveh celih števil.

Poglej Mera iracionalnosti in Racionalno število

Realno število

Številska premica Reálno števílo je matematični pojem, intuitivno določen kot število, ki ustreza točki na številski premici.

Poglej Mera iracionalnosti in Realno število

Teorija števil

Teoríja števíl je običajno tista matematična disciplina, ki raziskuje značilnosti celih števil.

Poglej Mera iracionalnosti in Teorija števil

Transcendentno število

Transcendéntno števílo je vsako kompleksno število, ki ni algebrsko, oziroma ni rešitev nobene polinomske enačbe oblike: kjer je n > 0 in so koeficienti ai cela števila (ali enakovredno racionalna števila), ne vsa enaka 0.

Poglej Mera iracionalnosti in Transcendentno število

Verižni ulomek

Verížni ulómek je v matematiki izraz oblike: kjer je a0 neko celo število, vsa druga števila an pa so naravna števila (oziroma pozitivna cela števila) in se imenujejo delni količniki.

Poglej Mera iracionalnosti in Verižni ulomek

2 (število)

2 (dvá) je naravno število, za katero velja 2.

Poglej Mera iracionalnosti in 2 (število)