Kazalo
9 odnosi: Asociativnost, Funkcija (matematika), Identična funkcija, Identiteta, Inverzna funkcija, Komutativnost, Matematična operacija, Nevtralni element, Podmnožica.
- Binarne operacije
- Funkcije in preslikave
Asociativnost
Dvočlena operacija * na množici S je asociativna, če za vsak x, y, z \in S velja: Primeri asociativnih dvočlenih operacij so na primer seštevanje in množenje množic realnih števil R, kompleksnih števil C in kvadratnih matrik reda n × n, seštevanje vektorjev, presek in unija množic.
Poglej Kompozitum funkcij in Asociativnost
Funkcija (matematika)
Funkcija poveže vsakemu elementu v množici ''X'' (vhod oz. podatek) natančno en element v množici ''Y'' (izhod oz. rezultat). Dva različna elementa v ''X'' imata lahko isti izhod, in ni nujno, da so vsi elementi v ''Y'' izhodi Graf funkcije \beginalign&\scriptstyle f \colon -1,\; 1,5 \to -1,\; 1,5 \\ &\textstyle x \mapsto \frac(4x^3-6x^2+1)\sqrtx+13-x\endalign Fúnkcija f: A \longrightarrow B je v matematiki preslikava, ki vsakemu elementu množice A priredi natanko en element množice B.
Poglej Kompozitum funkcij in Funkcija (matematika)
Identična funkcija
Idéntična fúnkcija (tudi idéntična preslikáva ali idéntična transformácija, kratko tudi identitéta) je matematična funkcija, ki preslika vsak element sam vase, tj.
Poglej Kompozitum funkcij in Identična funkcija
Identiteta
Identitéta ali istovétnost ima lahko več pomenov.
Poglej Kompozitum funkcij in Identiteta
Inverzna funkcija
Graf inverzne funkcije dobimo tako, da graf prvotne funkcije prezrcalimo čez simetralo lihih kvadrantov (premico ''y''.
Poglej Kompozitum funkcij in Inverzna funkcija
Komutativnost
Dvočlena operacija * na množici S je komutativna, če za vsak x, y \in S velja: Primeri komutativnih dvočlenih operacij so na primer seštevanje in množenje v množici realnih števil R, kompleksnih števil C in kvadratnih matrik reda n × n, seštevanje vektorjev, presek in unija množic.
Poglej Kompozitum funkcij in Komutativnost
Matematična operacija
Matemátična operácija (tudi račúnska operácija ali operátor) je matematična preslikava, ki urejeni ''n''-terici podatkov (a, b,...,d) iz kartezičnega produkta A × B ×...× D priredi rezultat operacije, element z iz množice Z.
Poglej Kompozitum funkcij in Matematična operacija
Nevtralni element
Nevtrálni elemènt ali identitéta I (označen tudi z E (- enota), e ali 1, pa tudi 0) grupe, oziroma pripadajoče matematične strukture S je v matematiki poseben edini element, za katerega za vsak a \in S velja: Nevtralni element imenujemo tudi enotski element.
Poglej Kompozitum funkcij in Nevtralni element
Podmnožica
PodmnožicaPodmnožica X⊆Y v Eulerjevem diagramu Podmnožica ali delna množica množice Y je v matematiki množica X, če so vsi elementi X tudi v Y. Relacijo z matematičnim zapisom zapišemo X ⊆ Y. Ali drugače, X ⊆ Y tedaj in le tedaj, ko X ne vsebuje nobenega elementa, ki ni tudi član množice Y.
Poglej Kompozitum funkcij in Podmnožica
Glej tudi
Binarne operacije
Funkcije in preslikave
Prav tako znan kot Kompozicija funkcij, Kompozitum, Sestava funkcij.