Delamo na obnovitvi aplikacije Unionpedia v trgovini Google Play
OdhodniDohodne
🌟Poenostavili smo našo zasnovo za boljšo navigacijo!
Instagram Facebook X LinkedIn

Izrek o povprečni vrednosti

Index Izrek o povprečni vrednosti

Za vsako funkcijo, ki je zvezna na ''a'', ''b'' in odvedljiva na (''a'', ''b''), obstaja neka točka ''c'' na odprtem intervalu (''a'', ''b''), da je ''sekanta'', ki povezuje obe končni točki intervala ''a'', ''b'', vzporedna ''tangenti'' v ''c''.

Kazalo

  1. 6 odnosi: Grandijeva vrsta, Joseph-Louis de Lagrange, Podgrupa, Primitivna funkcija, Seznam matematičnih vsebin, 1 − 2 + 3 − 4 + ···.

Grandijeva vrsta

Grandijeva vŕsta se v matematiki včasih imenuje neskončna vrsta 1 − 1 + 1 − 1 + ···, oziroma zapisana z znakom za vsoto: Vrsta se imenuje po italijanskem rimskokatoliškem duhovniku, filozofu, matematiku in inženirju Luigiju Guidu Grandiju, ki je leta 1703 podal o njej pomembno razpravo v knjigi Quadratura circula et hyperbolae per infinitas hyperbolas geometrice exhibita.

Poglej Izrek o povprečni vrednosti in Grandijeva vrsta

Joseph-Louis de Lagrange

Grof Joseph-Louis de Lagrange (rojen Giuseppe Lodovico Lagrangia), italijansko-francoski plemič, matematik, astronom in mehanik, * 25. januar 1736, Torino, Piemont, Italija, † 10. april 1813, Pariz, Francija.

Poglej Izrek o povprečni vrednosti in Joseph-Louis de Lagrange

Podgrupa

Podgrupa dane grupe za neko dvočleno operacijo * je H podmnožica množice G se imenuje podgrupa G, če H tudi tvori grupo za dvočleno operacijo *.

Poglej Izrek o povprečni vrednosti in Podgrupa

Primitivna funkcija

Primitívna fúnkcija ali prvôtna fúnkcija dane (izvorne) funkcije f(x) je v infinitezimalnem računu in matematični analizi funkcija F(x), katere odvod je enak f(x): Postopek reševanja za primitivne funkcije je iskanje nedoločenega integrala.

Poglej Izrek o povprečni vrednosti in Primitivna funkcija

Seznam matematičnih vsebin

Seznam matematičnih vsebin poskuša podati vse članke, ki se v Wikipediji nanašajo na matematiko in prvenstveno služi za nadzorovanje sprememb.

Poglej Izrek o povprečni vrednosti in Seznam matematičnih vsebin

1 − 2 + 3 − 4 + ···

delne vsote vrste 1 − 2 + 3 − 4 + ··· 1 − 2 + 3 − 4 + ··· je neskončna vrsta, katere členi so zaporedna cela števila z alternirajočimi predznaki.

Poglej Izrek o povprečni vrednosti in 1 − 2 + 3 − 4 + ···

Prav tako znan kot Izrek o končnem prirastku funkcije, Lagrangeev izrek (matematična analiza).