Delamo na obnovitvi aplikacije Unionpedia v trgovini Google Play
OdhodniDohodne
🌟Poenostavili smo našo zasnovo za boljšo navigacijo!
Instagram Facebook X LinkedIn

Cauchyjev produkt

Index Cauchyjev produkt

Cauchyjev prodúkt dveh zaporedij \textstyle (a_)_\,, \textstyle (b_)_\, je v matematiki nezvezna konvolucija zaporedij s katero nastane novo zaporedje \textstyle (c_)_\,, katerega splošna oblika je dana kot: Je zaporedje, katerega povezana formalna potenčna vrsta \textstyle \sum_^ c_ X^\, je produkt dveh vrst, ki sta podobno povezani z (a_)_\, in (b_)_\,.

Kazalo

  1. 7 odnosi: Augustin Louis Cauchy, Bernoullijevo število, Grandijeva vrsta, Praštevilski izrek, Produkt (razločitev), Seznam matematičnih vsebin, 1 − 2 + 3 − 4 + ···.

Augustin Louis Cauchy

Baron Augustin Louis Cauchy, francoski inženir in matematik, * 21. avgust 1789, Pariz, Francija, † 23. maj 1857, Sceaux, Seine, Francija.

Poglej Cauchyjev produkt in Augustin Louis Cauchy

Bernoullijevo število

Bernoullijeva števíla so v matematiki zaporedje racionalnih števil.

Poglej Cauchyjev produkt in Bernoullijevo število

Grandijeva vrsta

Grandijeva vŕsta se v matematiki včasih imenuje neskončna vrsta 1 − 1 + 1 − 1 + ···, oziroma zapisana z znakom za vsoto: Vrsta se imenuje po italijanskem rimskokatoliškem duhovniku, filozofu, matematiku in inženirju Luigiju Guidu Grandiju, ki je leta 1703 podal o njej pomembno razpravo v knjigi Quadratura circula et hyperbolae per infinitas hyperbolas geometrice exhibita.

Poglej Cauchyjev produkt in Grandijeva vrsta

Praštevilski izrek

Práštevílski izrèk (tudi izrèk o gostôti práštevíl) je v matematiki izrek o asimptotični porazdelitvi praštevil.

Poglej Cauchyjev produkt in Praštevilski izrek

Produkt (razločitev)

Produkt ima več pomenov.

Poglej Cauchyjev produkt in Produkt (razločitev)

Seznam matematičnih vsebin

Seznam matematičnih vsebin poskuša podati vse članke, ki se v Wikipediji nanašajo na matematiko in prvenstveno služi za nadzorovanje sprememb.

Poglej Cauchyjev produkt in Seznam matematičnih vsebin

1 − 2 + 3 − 4 + ···

delne vsote vrste 1 − 2 + 3 − 4 + ··· 1 − 2 + 3 − 4 + ··· je neskončna vrsta, katere členi so zaporedna cela števila z alternirajočimi predznaki.

Poglej Cauchyjev produkt in 1 − 2 + 3 − 4 + ···