Podobnosti med Petstrana kupola in Rombiikozidodekaeder
Petstrana kupola in Rombiikozidodekaeder še 15 stvari v skupni (v Unijapedija): Dualni polieder, Enakostranični trikotnik, Geometrija, Johnsonovo telo, Kupola (geometrija), Kvadrat (geometrija), Mreža telesa, Oglišče, Petkotnik, Površina, Prostornina, Rob (geometrija), Seznam grup sferne simetrije, Stranska ploskev, Trikotnik.
Dualni polieder
stranskih ploskev. ''dvojna rektifikacija''. Keplerjevega dela ''Ubranost sveta'' (''Harmonices Mundi'') (1619) Dualni polieder je v geometriji eden izmed para poliedrov, katerega oglišča enega odgovarjajo stranskim ploskvam drugega.
Dualni polieder in Petstrana kupola · Dualni polieder in Rombiikozidodekaeder ·
Enakostranični trikotnik
Enakostránični trikótnik je trikotnik, pri katerem so vse tri stranice enako dolge.
Enakostranični trikotnik in Petstrana kupola · Enakostranični trikotnik in Rombiikozidodekaeder ·
Geometrija
Ciklopedije (1728) Geometríja je znanstvena disciplina matematike, ki se ukvarja s prostorskimi značilnostmi teles in njihovimi medsebojnimi odnosi.
Geometrija in Petstrana kupola · Geometrija in Rombiikozidodekaeder ·
Johnsonovo telo
Podaljšana kvadratna girobikupola (''J''37) je Johnsonovo telo 24-imi enakostraničnimi trikotniki ni Johnsonovo telo, ker ni konveksno (to je v resnici stelacija, ki je edino možno za oktaeder.) diedrske kote.) Johnsonovo telo je strogo konveksni polieder, ki ima za stranske ploskve pravilne mnogokotnike, ki pa niso uniformni.
Johnsonovo telo in Petstrana kupola · Johnsonovo telo in Rombiikozidodekaeder ·
Kupola (geometrija)
Kupola je v geometriji telo, ki nastane z združevanjem dveh mnogokotnikov.
Kupola (geometrija) in Petstrana kupola · Kupola (geometrija) in Rombiikozidodekaeder ·
Kvadrat (geometrija)
Kvadrat Kvadrát (tudi zastarelo štirják) je lik v ravninski geometriji.
Kvadrat (geometrija) in Petstrana kupola · Kvadrat (geometrija) in Rombiikozidodekaeder ·
Mreža telesa
Mréža (tudi ravnínska mréža) geometrijskega telesa je ravninski prikaz vseh stranskih ploskev, ki omejujeo dano telo.
Mreža telesa in Petstrana kupola · Mreža telesa in Rombiikozidodekaeder ·
Oglišče
Šestkotnik ima 6 oglišč Petstrana piramida ima 6 oglišč, zgornje oglišče imenujemo tudi vrh Oglíšče v ravninski geometriji je točka, kjer se stikata dve stranici geometrijskega lika (mnogokotnika).
Oglišče in Petstrana kupola · Oglišče in Rombiikozidodekaeder ·
Petkotnik
Pravilni petkotnik Petkótnik ali peterokótnik (starogrško pentagon) je v ravninski geometriji mnogokotnik s petimi stranicami, petimi oglišči in petimi notranjimi koti.
Petkotnik in Petstrana kupola · Petkotnik in Rombiikozidodekaeder ·
Površina
Površína je v geometriji merilo za velikost ploskve.
Petstrana kupola in Površina · Površina in Rombiikozidodekaeder ·
Prostornina
Prostornína ali volúmen (oznaka V) je fizikalna količina, ki pove, koliko prostora zaseda telo.
Petstrana kupola in Prostornina · Prostornina in Rombiikozidodekaeder ·
Rob (geometrija)
Rob je v geometriji del črte, ki povezuje dve sosednji oglišči v mnogokotniku.
Petstrana kupola in Rob (geometrija) · Rob (geometrija) in Rombiikozidodekaeder ·
Seznam grup sferne simetrije
Seznam grup sferne simetrije vsebuje grupe sferne simetrije.
Petstrana kupola in Seznam grup sferne simetrije · Rombiikozidodekaeder in Seznam grup sferne simetrije ·
Stranska ploskev
Stranska ploskev poliedra je vsak mnogokotnik, ki tvori njegovo mejo.
Petstrana kupola in Stranska ploskev · Rombiikozidodekaeder in Stranska ploskev ·
Trikotnik
Trikotnik Trikotnik je eden osnovnih geometrijskih likov.
Petstrana kupola in Trikotnik · Rombiikozidodekaeder in Trikotnik ·
Zgornji seznam odgovore na naslednja vprašanja
- Kaj Petstrana kupola in Rombiikozidodekaeder imajo skupnega
- Kakšne so podobnosti med Petstrana kupola in Rombiikozidodekaeder
Primerjava med Petstrana kupola in Rombiikozidodekaeder
Petstrana kupola 24 odnose, medtem ko je Rombiikozidodekaeder 74. Saj imajo skupno 15, indeks Jaccard je 15.31% = 15 / (24 + 74).
Reference
Ta članek prikazuje razmerje med Petstrana kupola in Rombiikozidodekaeder. Za dostop vsak izdelek, iz katerega je bil izločen informacije, obiščite: