Bertrandov izrek in Euler-Lagrangeeva enačba
Bližnjice: Razlike, Podobnosti, Jaccard Podobnost koeficient, Reference.
Razlika med Bertrandov izrek in Euler-Lagrangeeva enačba
Bertrandov izrek vs. Euler-Lagrangeeva enačba
Bertrandov izrék v klasični mehaniki pravi, da le za dva tipa potencialov obstajajo stabilni sklenjeni tiri (orbite), za obratno kvadratno centralno silo, kot sta gravitacijski ali elektrostatski potencial: in za preprost potencial radialnega harmoničnega oscilatorja: Izrek se imenuje po Josephu Louisu Françoisu Bertrandu, ki ga je leta 1873 objavil. Euler-Lagrangeeva enáčba (tudi Lagrangeeva enáčba) ali sistem Euler-Lagrangeevih enačb pove, da doseže integral akcije S ekstremno vrednost tedaj in le tedaj, ko velja Pri tem je L Lagrangeeva funkcija sistema, x^a pa so posplošene koordinate.
Podobnosti med Bertrandov izrek in Euler-Lagrangeeva enačba
Bertrandov izrek in Euler-Lagrangeeva enačba še 0 stvari v skupni (v Unijapedija).
Zgornji seznam odgovore na naslednja vprašanja
- Kaj Bertrandov izrek in Euler-Lagrangeeva enačba imajo skupnega
- Kakšne so podobnosti med Bertrandov izrek in Euler-Lagrangeeva enačba
Primerjava med Bertrandov izrek in Euler-Lagrangeeva enačba
Bertrandov izrek 34 odnose, medtem ko je Euler-Lagrangeeva enačba 6. Saj imajo skupno 0, indeks Jaccard je 0.00% = 0 / (34 + 6).
Reference
Ta članek prikazuje razmerje med Bertrandov izrek in Euler-Lagrangeeva enačba. Za dostop vsak izdelek, iz katerega je bil izločen informacije, obiščite: