Delamo na obnovitvi aplikacije Unionpedia v trgovini Google Play
🌟Poenostavili smo našo zasnovo za boljšo navigacijo!
Instagram Facebook X LinkedIn

Arhimedsko telo in Prisekani ikozidodekaeder

Bližnjice: Razlike, Podobnosti, Jaccard Podobnost koeficient, Reference.

Razlika med Arhimedsko telo in Prisekani ikozidodekaeder

Arhimedsko telo vs. Prisekani ikozidodekaeder

Rombiikozidodekaeder je eno izmed arhimedskih teles. Arhimedsko telo je visoko simetrični, polpravilni polieder, ki ga sestavlja dva ali več vrst pravilnih mnogokotnikov. Prisekani ikozidodekaeder je v geometriji konveksni polieder.

Podobnosti med Arhimedsko telo in Prisekani ikozidodekaeder

Arhimedsko telo in Prisekani ikozidodekaeder še 19 stvari v skupni (v Unijapedija): Coxeter-Dinkinov diagram, Desetkotnik, Dualni polieder, Geometrijsko telo, Ikozidodekaeder, Kvadrat (geometrija), Mreža telesa, Oglišče, Polpravilni polieder, Pravilni mnogokotnik, Prisekani dodekaeder, Prisekani ikozaeder, Prisekani ikozidodekaeder, Prostornina, Rob (geometrija), Rombiikozidodekaeder, Schläflijev simbol, Stranska ploskev, Uniformni polieder.

Coxeter-Dinkinov diagram

Coxeter-Dinkinovi diagrami za osnovne končne Coxeterjeve grupe. Coxeter-Dinkinovi diagrami za osnovne afine Coxeterjeve grupe. Coxeter-Dinkinov diagram (tudi Coxeterjev diagram ali Coxeterjev graf) je graf, ki ima s številkami označene stranice (imenujejo se veje) s katerimi se prikaže prostorske odnose med zbirko zrcal oziroma odbojnih hiperravnin.

Arhimedsko telo in Coxeter-Dinkinov diagram · Coxeter-Dinkinov diagram in Prisekani ikozidodekaeder · Poglej več »

Desetkotnik

Pravilni desetkotnik Desétkotnik ali s tujko dékagon je v ravninski geometriji mnogokotnik z desetimi stranicami, desetimi oglišči in desetimi notranjimi koti.

Arhimedsko telo in Desetkotnik · Desetkotnik in Prisekani ikozidodekaeder · Poglej več »

Dualni polieder

stranskih ploskev. ''dvojna rektifikacija''. Keplerjevega dela ''Ubranost sveta'' (''Harmonices Mundi'') (1619) Dualni polieder je v geometriji eden izmed para poliedrov, katerega oglišča enega odgovarjajo stranskim ploskvam drugega.

Arhimedsko telo in Dualni polieder · Dualni polieder in Prisekani ikozidodekaeder · Poglej več »

Geometrijsko telo

konveksnega poliedra Konkavni polieder Geometríjsko teló (tudi samo teló) je v matematiki strnjeni (kompaktni) del trirazsežnega prostora omejen s ploskvami.

Arhimedsko telo in Geometrijsko telo · Geometrijsko telo in Prisekani ikozidodekaeder · Poglej več »

Ikozidodekaeder

Ikozidodekaeder je v geometriji konveksni polieder.

Arhimedsko telo in Ikozidodekaeder · Ikozidodekaeder in Prisekani ikozidodekaeder · Poglej več »

Kvadrat (geometrija)

Kvadrat Kvadrát (tudi zastarelo štirják) je lik v ravninski geometriji.

Arhimedsko telo in Kvadrat (geometrija) · Kvadrat (geometrija) in Prisekani ikozidodekaeder · Poglej več »

Mreža telesa

Mréža (tudi ravnínska mréža) geometrijskega telesa je ravninski prikaz vseh stranskih ploskev, ki omejujeo dano telo.

Arhimedsko telo in Mreža telesa · Mreža telesa in Prisekani ikozidodekaeder · Poglej več »

Oglišče

Šestkotnik ima 6 oglišč Petstrana piramida ima 6 oglišč, zgornje oglišče imenujemo tudi vrh Oglíšče v ravninski geometriji je točka, kjer se stikata dve stranici geometrijskega lika (mnogokotnika).

Arhimedsko telo in Oglišče · Oglišče in Prisekani ikozidodekaeder · Poglej več »

Polpravilni polieder

Polpravilni polieder kot izraz uporabljajo različni avtorji na različne načine.

Arhimedsko telo in Polpravilni polieder · Polpravilni polieder in Prisekani ikozidodekaeder · Poglej več »

Pravilni mnogokotnik

Pravilni mnogokotnik ali pravilni večkotnik je mnogokotnik, ki ima vse stranice enako dolge in vse kote med seboj skladne.

Arhimedsko telo in Pravilni mnogokotnik · Pravilni mnogokotnik in Prisekani ikozidodekaeder · Poglej več »

Prisekani dodekaeder

Prisekani dodekaeder je v geometriji konveksni polieder.

Arhimedsko telo in Prisekani dodekaeder · Prisekani dodekaeder in Prisekani ikozidodekaeder · Poglej več »

Prisekani ikozaeder

Prisekani ikozaeder je v geometriji konveksni polieder.

Arhimedsko telo in Prisekani ikozaeder · Prisekani ikozaeder in Prisekani ikozidodekaeder · Poglej več »

Prisekani ikozidodekaeder

Prisekani ikozidodekaeder je v geometriji konveksni polieder.

Arhimedsko telo in Prisekani ikozidodekaeder · Prisekani ikozidodekaeder in Prisekani ikozidodekaeder · Poglej več »

Prostornina

Prostornína ali volúmen (oznaka V) je fizikalna količina, ki pove, koliko prostora zaseda telo.

Arhimedsko telo in Prostornina · Prisekani ikozidodekaeder in Prostornina · Poglej več »

Rob (geometrija)

Rob je v geometriji del črte, ki povezuje dve sosednji oglišči v mnogokotniku.

Arhimedsko telo in Rob (geometrija) · Prisekani ikozidodekaeder in Rob (geometrija) · Poglej več »

Rombiikozidodekaeder

kva dogaja? |- | style.

Arhimedsko telo in Rombiikozidodekaeder · Prisekani ikozidodekaeder in Rombiikozidodekaeder · Poglej več »

Schläflijev simbol

oglišča. Schläflijev simbol je v geometriji oznaka, ki ima obliko in definira pravilne politope in teselacije.

Arhimedsko telo in Schläflijev simbol · Prisekani ikozidodekaeder in Schläflijev simbol · Poglej več »

Stranska ploskev

Stranska ploskev poliedra je vsak mnogokotnik, ki tvori njegovo mejo.

Arhimedsko telo in Stranska ploskev · Prisekani ikozidodekaeder in Stranska ploskev · Poglej več »

Uniformni polieder

Uniformni polieder je polieder, ki ima za stranske ploskve pravilne mnogokotnike, ki so prehodni na svojih ogliščih (to pomeni, da obstaja togi premik (izometrija) za preslikavo poljubnega oglišča v drugega).

Arhimedsko telo in Uniformni polieder · Prisekani ikozidodekaeder in Uniformni polieder · Poglej več »

Zgornji seznam odgovore na naslednja vprašanja

Primerjava med Arhimedsko telo in Prisekani ikozidodekaeder

Arhimedsko telo 41 odnose, medtem ko je Prisekani ikozidodekaeder 55. Saj imajo skupno 19, indeks Jaccard je 19.79% = 19 / (41 + 55).

Reference

Ta članek prikazuje razmerje med Arhimedsko telo in Prisekani ikozidodekaeder. Za dostop vsak izdelek, iz katerega je bil izločen informacije, obiščite: